Antagonistic Regulation of ABA and GA in Metabolism and Signaling Pathways
نویسندگان
چکیده
The phytohormones gibberellic acid (GA) and abscisic acid (ABA) are widely recognized as essential endogenous regulators that mostly play antagonistic roles in plant developmental processes and environmental responses. A variety of both internal and external cues oppositely regulate GA and ABA biosynthesis and catabolism, which directly and indirectly affect their signaling pathways and subsequent responses. Recent discoveries have revealed direct molecular links between GA- and ABA-signaling components, which provide novel insights into their antagonistic regulation. In this review, we mainly focus on these recent reports and the growing understanding of GA and ABA antagonism in metabolic regulation and signaling interactions, and attempt to clarify the problems and challenges involved in exploring the complicated regulatory events associated with these two phytohormones.
منابع مشابه
MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis.
Abscisic acid (ABA) and gibberellin (GA) are two antagonistic phytohormones that regulate seed germination in response to biotic and abiotic environmental stresses. We demonstrate here that MOTHER OF FT AND TFL1 (MFT), which encodes a phosphatidylethanolamine-binding protein, regulates seed germination via the ABA and GA signaling pathways in Arabidopsis thaliana. MFT is specifically induced in...
متن کاملTranscriptional Responses to Gibberellin and Abscisic Acid in Barley Aleurone
Cereal aleurone has been established as a model system to investigate giberrellin (GA) and abscisic acid (ABA) responses. Using Barley 1 GeneChip, we examined the mRNA accumulation of over 22 000 genes in de-embryonated barley aleurone treated with GA and ABA. We observed that 1 328 genes had more than a threefold change in response to GA treatment, whereas 206 genes had a more than threefold c...
متن کاملRegulation of Bone Metabolism
Bone is formed through the processes of endochondral and intramembranous ossification. In endochondral ossification primary mesenchymal cells differentiate to chondrocytes and then are progressively substituted by bone, while in intramembranous ossification mesenchymal stem cells (MSCs) differentiate directly into osteoblasts to form bone. The steps of osteogenic proliferation, differentiation,...
متن کاملTranscriptomic insights into antagonistic effects of gibberellin and abscisic acid on petal growth in Gerbera hybrida
Petal growth is central to floral morphogenesis, but the underlying genetic basis of petal growth regulation is yet to be elucidated. In this study, we found that the basal region of the ray floret petals of Gerbera hybrida was the most sensitive to treatment with the phytohormones gibberellin (GA) and abscisic acid (ABA), which regulate cell expansion during petal growth in an antagonistic man...
متن کاملEffects of Abscisic Acid, Gibberellin, Ethylene and Their Interactions on Production of Phenolic Acids in Salvia miltiorrhiza Bunge Hairy Roots
Salvia miltiorrhiza is one of the most important traditional Chinese medicinal plants because of its excellent performance in treating coronary heart disease. Phenolic acids mainly including caffeic acid, rosmarinic acid and salvianolic acid B are a group of active ingredients in S. miltiorrhiza. Abscisic acid (ABA), gibberellin (GA) and ethylene are three important phytohormones. In this study...
متن کامل